PRIMER NOTE

Microsatellite markers isolated from saltgrass (Distichlis spicata)

OLGA V. TSYUSKO,* MAUREEN B. PETERS,* TRACEY D. TUBERVILLE,* CRIS HAGEN,* SARAH M. EPPLEY† and TRAVIS C. GLENN*‡

*Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA, †Department of Biology, Portland State University, PO Box 751 Portland, OR 97207, USA, ‡Department of Biological Sciences, University of South Carolina, Columbia, SC 29802, USA

Abstract

Twelve polymorphic microsatellite DNA loci were isolated from saltgrass (Distichlis spicata) and optimized for future studies of its breeding system. The loci were screened for variability among 24 individuals from two populations. The primers amplified loci with numbers of alleles ranging from four to 14 per locus and polymorphic information content from 0.481 to 0.951. Observed heterozygosity varied from 0.227 to 0.958.

Keywords: breeding system, Distichlis spicata, microsatellites, mutation, PCR, primer

Received 11 January 2007; revision accepted 6 February 2007

Distichlis spicata (Poaceae) is a dioecious, perennial grass that is common in estuaries and in inland, saline habitats in North America. The key role of D. spicata in tidal marsh ecosystems has led to its study in seminal community ecology and climate change research (e.g. Emery et al. 2001); the extreme salt-tolerance of D. spicata allowed its cultivation for turf and reclamation use in arid regions (Yensen 2002); and its extreme sex ratio variation has led to its becoming a model system for understanding plant sex ratio evolution (e.g. Freeman et al. 1976; Eppley 2001, 2005). In this study, we report on the characterization of 12 microsatellite loci in D. spicata, which will be used for pollen flow analysis and genotyping to further clarify its breeding system.

Leaf samples were collected and dried on silica gel, and genomic DNA was extracted using the QIAGEN DNeasy Kit according to the manufacturer’s protocol. To minimize the collection of identical genotypes, the samples were taken from at least 10 m apart, or from seed grown in the greenhouse (for the Pt. Reyes population). DNA from two individuals was enriched twice for microsatellites using three probe mixes (mix 2 = (AG)$_{12}$ (TG)$_{12}$ (AAC)$_{6}$ (AAG)$_{8}$ (AAT)$_{12}$ (ACT)$_{12}$ (ATC)$_{8}$; mix 3 = (AAAC)$_{6}$ (AAAG)$_{6}$ (AATC)$_{6}$ (AATG)$_{6}$ (ACAG)$_{6}$ (ACTC)$_{6}$ (ACTG)$_{6}$; mix 4 = (AAAT)$_{8}$ (AACT)$_{8}$ (AAGT)$_{8}$ (ACAT)$_{8}$ (AGAT)$_{8}$ (ACAT)$_{8}$ (AGAT)$_{8}$ (ACAT)$_{8}$) following Glenn & Schable (2005). Briefly, the DNA was digested with restriction enzyme Rsal (New England Biolabs) and simultaneously ligated to double-stranded SuperSNX linkers (SuperSNX24 Forward 5’-GTTAAGGCCTAGCT-AGCAGCAGAATC and SuperSNX24 Reverse 5’-GATTC-TGCTAGCTAGCCCTAACAAAA). Linker-ligated DNA was denatured and hybridized to biotinylated microsatellite oligonucleotide mixes, which were then captured on magnetic streptavidin beads (Dynal). Unhybridized DNA was washed away and the remaining DNA was eluted from the beads, amplified in polymerase chain reactions (PCR) using the forward SuperSNX24 as a primer, and cloned with TOPO TA Cloning Kits (Invitrogen). β-galactosidase gene was used to detect clones with inserts. A total of 192 positive clones were isolated by transferring each colony to an individual well of a plate containing Luria-Bertani broth and the inserts were amplified with M13 forward and reverse primers. A total of 96 plasmids were sequenced using the BigDye Terminators version 3.1 (Applied Biosystems) and an ABI 3130xl capillary sequencer. Sequences from both strands were assembled and edited in SEQUENCER 4.1 (Gencodes) and exported to EPHEMERIS 1.0 (available at www.uga.edu/srel/DNA_Lab/programs.htm) for microsatellite searching. Ninety-three of the 96 sequenced clones contained microsatellites. Twenty-four PCR primers were designed using OLIGO 6.67 (Molecular Biology Insights), and one primer in each pair was modified on the 5’ end with an engineered sequence (CAG tag 5’-CAGTCGGCCGTCA-TCA-3; see www.uga.edu/srel/DNA_Lab/protocols.htm).
to allow use of a third primer in the PCR that is fluorescently labelled for detection on the ABI 3130xl.

The 24 PCR primer pairs were tested for amplification using 16 individuals across four different populations (6 from Tomales Bay, CA, 2 from Cambridge, MD, 4 from Georgetown, SC, and 4 from Pt. Reyes National Seashore, CA). PCR amplifications were performed in a 11.5-µL volume (10 mM Tris pH 8.4, 50 mM KCl, 25.0 µg/mL BSA, 0.4 µM unlabelled primer, 0.04 µM tag-labelled primer, 0.36 µM universal dye-labelled primer, 3 mM MgCl₂, 0.15 mM dNTPs, 0.5 U JumpStart Taq DNA Polymerase (Sigma), and 5–50 ng DNA template) using an Applied Biosystems thermal cycler (GeneAmp PCR System 9700). Touchdown thermal cycling programme (Don et al. 1991) encompassing a 10° span of annealing temperatures ranging between 65 °C and 55 °C, 60 °C and 50 °C or 55 °C and 45 °C were used for the amplification. Cycling parameters were 21 cycles of 96 °C for 20 s, highest annealing temperature (decreased 0.5 °C per cycle) for 20 s, and 72 °C for 30 s; and 15 cycles of 96 °C for 20 s, lowest annealing temperature for 20 s, and 72 °C for 30 s. PCR products were run on an ABI 3130xl sequencer and sized with Naurox size standard using an Applied Biosystems). Twelve of the tested primer pairs successfully amplified PCR product of high quality.

Samples from 24 individuals from two populations (Tomales Bay and Pt. Reyes National Seashore, CA) were used to test for microsatellite variability across the 12 loci. Characteristics of the 12 working primer pairs and optimal conditions for their amplification are given in Table 1. We estimated the number of alleles per locus, observed and expected heterozygosities and PIC is polymorphic information content; null alleles are estimated from cervus 2.0. A total of 24 individuals from two populations from CA were screened. *Significant deviations from Hardy–Weinberg equilibrium are indicated at P < 0.05. The HW test and calculations of null allele frequencies were performed on 19 samples from Tomales Bay. Primers with CAG tag (5′-CAGTCGGGCGTCATCA-3′) are indicated with superscript FAM or NED, which was used as the fluorescent dye for genotyping.

Table 1 Characterization of 12 polymorphic microsatellite loci for Distichlis spicata. Size indicates the range of observed alleles in base pair; k is number of alleles; n is the number of the genotypes obtained; Hₒ and Hₑ are expected and observed heterozygosities and PIC is polymorphic information content; null alleles are estimated from cervus 2.0. A total of 24 individuals from two populations from CA were screened. *Significant deviations from Hardy–Weinberg equilibrium are indicated at P < 0.05. The HW test and calculations of null allele frequencies were performed on 19 samples from Tomales Bay. Primers with CAG tag (5′-CAGTCGGGCGTCATCA-3′) are indicated with superscript FAM or NED, which was used as the fluorescent dye for genotyping.

Locus accession no. Primer sequence 5′–3′ Repeat motif Size (bp) T_D k n Hₒ Hₑ PIC Null alleles
Dis 1 U: FAMGCACACTACCTGTGTTAAT (GATA)₁₀ (GA)₁₀ 243–311 65 5 24 0.625 0.665 0.605 0.020
EF193006 L: TACCCAATGCAACACTCTT (ATGC)₉ 218–274 55 4 22 0.227* 0.614 0.529 0.493
Dis 3 U: TATGGGAATGCTACATATC (ATGC)₉ 262–287 55 4 22 0.227* 0.614 0.529 0.493
EF193007 L: FAMGCACACTACCTGTGTTAAT (GATA)₁₀ (GA)₁₀ 243–311 65 5 24 0.625 0.665 0.605 0.020
Dis 5 U: FAMGCACACTACCTGTGTTAAT (GATA)₁₀ (GA)₁₀ 243–311 65 5 24 0.625 0.665 0.605 0.020
EF 193008 L: CCAAAGGGGCAAGAGAG 314–336 65 7 21 0.905 0.775 0.722 –0.153
Dis 6 U: FAMGCACACTACCTGTGTTAAT (GATA)₁₀ (GA)₁₀ 175–214 65 9 21 0.238* 0.703 0.663 0.517
EF193009 L: ATTTCTCAGAGCTTTTATG (AG)₁₂ 219–283 65 9 24 0.917 0.794 0.751 –0.076
Dis 7 U: AAGCAACAGCTCTCTAG (AG)₁₂ 262–287 55 4 22 0.227* 0.614 0.529 0.493
EF193010 L: FAMTCACACCTTTAAGCTTACA (ATGT)₉ 262–287 55 4 22 0.227* 0.614 0.529 0.493
Dis 9 U: NEPTAGACACCTGCTTTTAC (ATGT)₉ 262–287 55 4 22 0.227* 0.614 0.529 0.493
EF 193011 L: AGGCAACACTACCTGTGTTAAT (GATA)₁₀ (GA)₁₀ 243–311 65 5 24 0.625 0.665 0.605 0.020
Dis10 U: NEPTAGACACCTGCTTTTAC (ATGT)₉ 262–287 55 4 22 0.227* 0.614 0.529 0.493
EF193012 L: AAACACTCAAGCACATTAGA (AG)₁₉ 200–232 65 11 24 0.708 0.746 0.712 –0.017
Dis 11 U: TGATCTCTCTTGTGTNT (ATGT)₇ 146–180 65 10 24 0.958* 0.875 0.841 –0.018
EF193013 L: FAMACAGCGACAAACAACTAG (CTT)₂₂ 165–223 65 14 24 1.000 0.883 0.851 –0.117
Dis13 U: NEPTAGACACCTGCTTTTAC (ATGT)₉ 262–287 55 4 22 0.227* 0.614 0.529 0.493
EF193014 L: TTGCTACAGGCTAGTAG (CTT)₂₂ 165–223 65 14 24 1.000 0.883 0.851 –0.117
Dis 17 U: NEPTAGACACCTGCTTTTAC (ATGT)₉ 262–287 55 4 22 0.227* 0.614 0.529 0.493
EF193015 L: TTGCTACAGGCTAGTAG (CTT)₂₂ 165–223 65 14 24 1.000 0.883 0.851 –0.117
Dis 20 U: NEPTAGACACCTGCTTTTAC (ATGT)₉ 262–287 55 4 22 0.227* 0.614 0.529 0.493
EF 193016 L: TGATCTCTCTTGTGTNT (ATGT)₇ 146–180 65 10 24 0.958* 0.875 0.841 –0.018
Dis 22 U: NEPTAGACACCTGCTTTTAC (ATGT)₉ 262–287 55 4 22 0.227* 0.614 0.529 0.493
EF193017 L: TTGCTACAGGCTAGTAG (CTT)₂₂ 165–223 65 14 24 1.000 0.883 0.851 –0.117

*Significant deviations from Hardy–Weinberg equilibrium are indicated at P < 0.05. The HW test and calculations of null allele frequencies were performed on 19 samples from Tomales Bay. Primers with CAG tag (5′-CAGTCGGGCGTCATCA-3′) are indicated with superscript FAM or NED, which was used as the fluorescent dye for genotyping.

© 2007 The Authors
Journal compilation © 2007 Blackwell Publishing Ltd
and Dis22) that deviated significantly from HWE even after applying Bonferroni correction for multiple tests. The assumption of random mating used for HWE is not true for saltgrass because of asexual reproduction and extreme sex ratios, thus the observed deviations are not surprising. No linkage was detected among 66 paired loci comparisons. BLAST searches of the D. spicata sequences indicate partial homology of locus Dis13 with another plant [97 bp matched partially to accession AY485644.1 (Triticum monococcum)].

Overall, given the characteristics of the developed polymorphic loci for D. spicata, they have a potential use for various purposes, including studying patterns of gene flow among populations and characterization of breeding system in this and closely related species.

Acknowledgements

This material is based upon work supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. We are grateful to J. Kelly, J.T. Morris and L. Murray for collection of plant material.

Disclaimer: ‘This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

References


